Palladium Nanoparticles-Based Fluorescence Resonance Energy Transfer Aptasensor for Highly Sensitive Detection of Aflatoxin M1 in Milk
نویسندگان
چکیده
A highly sensitive aptasensor for aflatoxin M₁ (AFM₁) detection was constructed based on fluorescence resonance energy transfer (FRET) between 5-carboxyfluorescein (FAM) and palladium nanoparticles (PdNPs). PdNPs (33 nm) were synthesized through a seed-mediated growth method and exhibited broad and strong absorption in the whole ultraviolet-visible (UV-Vis) range. The strong coordination interaction between nitrogen functional groups of the AFM₁ aptamer and PdNPs brought FAM and PdNPs in close proximity, which resulted in the fluorescence quenching of FAM to a maximum extent of 95%. The non-specific fluorescence quenching caused by PdNPs towards fluorescein was negligible. After the introduction of AFM₁ into the FAM-AFM₁ aptamer-PdNPs FRET system, the AFM₁ aptamer preferentially combined with AFM₁ accompanied by conformational change, which greatly weakened the coordination interaction between the AFM₁ aptamer and PdNPs. Thus, fluorescence recovery of FAM was observed and a linear relationship between the fluorescence recovery and the concentration of AFM₁ was obtained in the range of 5-150 pg/mL in aqueous buffer with the detection limit of 1.5 pg/mL. AFM₁ detection was also realized in milk samples with a linear detection range from 6 pg/mL to 150 pg/mL. The highly sensitive FRET aptasensor with simple configuration shows promising prospect in detecting a variety of food contaminants.
منابع مشابه
Highly Sensitive FRET-Based Fluorescence Immunoassay for Detecting of Aflatoxin B1 Using Magnetic/Silica Core-Shell as a Signal Intensifier
Background: Recently, some new nanobiosensors using different nanoparticles or microarray systems for detection of mycotoxins have been designed . However, rapid, sensitive and early detection of aflatoxicosis would be very helpful to distinguish high-risk persons. Objectives: We report a highly sensitive competitive immunoassay using magnetic/silica core shell as a signal intensifier for the d...
متن کاملFabrication of a Voltammetric Biosensor in Combination with Enzyme-linked Immunosorbent Assay to Detect Aflatoxin M1 in Milks
Background and Objectives: Aflatoxin M1 is one the most important mycotoxin contaminants of milks. Various methods have been described to detect aflatoxins in milks, including chromatography, enzyme-linked immunosorbent assay and colorimetry. Regarding high sensitivity of electrochemical sensor based methods, the aim of the present study was to fabricate an accurate sensitive voltametric biosen...
متن کاملA highly sensitive and selective aptasensor based on graphene oxide fluorescence resonance energy transfer for the rapid determination of oncoprotein PDGF-BB.
Oncoprotein platelet derived growth factor-BB (PDGF-BB) is one of the most critical growth factors that regulates tumor growth and division. In this work, a highly sensitive and selective fluorescence resonance energy transfer (FRET) aptasensor for PDGF-BB detection based on the assembly of dye-labeled aptamer and graphene oxide (GO) is developed for the first time. Due to the non-covalent asse...
متن کاملA Graphene Oxide-Based Fluorescent Aptasensor for the Turn-on Detection of CCRF-CEM
A convenient, low-cost, and highly sensitive fluorescent aptasensor for detection of leukemia has been developed based on graphene oxide-aptamer complex (GO-apt). Graphene oxide (GO) can absorb carboxyfluorescein-labeled Sgc8 aptamer (FAM-apt) by π-π stacking and quench the fluorescence through fluorescence resonance energy transfer (FRET). In the absence of Sgc8 target cell CCRF-CEM, the fluor...
متن کاملBioconjugated persistent luminescence nanoparticles for Föster resonance energy transfer immunoassay of prostate specific antigen in serum and cell extracts without in situ excitation.
A novel Föster resonance energy transfer (FRET) immunoassay based on persistent luminescence nanoparticles (PLNP) was established for prostate specific antigen (PSA) detection in serum and cell extracts without in situ excitation. The specific FRET behavior allows highly selective and sensitive ratiometric photoluminescent detection of PSA in biological samples.
متن کامل